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NOLTR 62-177

A GENERALIZED BOUNDARY VALUE PROBLEM

FOR w = £(x,y,u,u,u)

INTRODUCTION

1. The Euler—Cauchy polygon method for proving the existence of a

solution for

%Ix = £(x,y) , y(0) =y, ,

was extended by J. B. Diaz [3] to the characteristic boundary value problem

for a hyperbolic partial differential equation

1) Uy = f(x,y,u,ux,uy) R
u(x,0) = o (x), u(0,y) = (y) , o (0) = (0) .
Here f is assumed to be bounded and continuous for (x,y) in some rectangle R,
and for all possible values of u, U, uy y and to satisfy a Lipschitz
condition in L uy . Under these conditions an existence theorem in the
large, i.e., throughout all of R, was obtained.

This method has been further extended by I. I. Glick [4] to the n~

dimensional analogue of (1.1),

U o x = £, = O, onx, =0,
1 n
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where f is a function of the xi's of u and of all mixed partial derivatives
of u of order less than n, and where the CTi's satisfy certain obvious com-
patibility conditions.

In the 2~dimensional case the method was extended by J. Conlan [2] to

the Cauchy problem,

uxy = f(x:}'yu;ux:uy) ’

u, = o (x) on y=x,
(1.2) u = (y) on y=x,

y

u(0,0) = 0,

and to the mixed boundary value problem, i.e., boundary conditions in (1.2)

;'eplaced by
u(0,y) = x(y) , ulx,x) = o(x), o(0)=1(0).

In this paper we consider the 2-dimensional problem

uxy = f(x,y,u,ux,uy) ,

u_ = 0+ au_ + bu ony= n(x) ,
(1.3) x v

uy:’r+cux+du on x = E(y) ,

'](O) = E(O) =0,

u(0,0) = u, a constant ,

vwhere ¢°, a, b are continuous functions of x, and 1, ¢, d are continuous
functions of y. The method of proof used here is again by an extension of

the method used in [2]. Using a different method, A. K. Aziz and J.B.Diaz{1]



o B S M - - it -

NOLTR 62-177

have treated the corresponding problem for the linear equation uxyfaux+buy+
cu = d where a,b,c, and 4 are functions only of x and ye We refer the reader
to (1] for a discussion of the history of the problem, and for an extensive
bibliography. In the linear case Aziz and Diaz were able to obtain an
existence theorem in the large. However for problem (1.3) all we get is an
existence theorem in the small.

We note that the ch;racteristic boundary value problem, the Cauchy
problem, and the mixed boundary value problem are special cases of (1.3). So
also is the Goursat problem, i.e., boundary conditions ;n (1.3) replaced by

u(x,q(x))= o(x) ,
(1.4) ‘ w(E(y),y)= <(y) ,

u(0,0) = ¢ (0)=1<(0)=0 .

To see this differentiate the first two of (1.4), obtaining

ux(x,n(x)) + n'(x)uy(X,n(x)) o'(x) ,

T'(Y) ’

£ (y)u, (E(y),y) + uy(i(y),y)
and these are of the same form as the boundary conditions of (1.3).

2. The boundary value problem.

Let R consist of the points (x,y) such that 0 < x < Aand 0 <y < B.
Let S consist of those points (u,p,q) such that — o < u,p,q < ®. And let
C be the cartesian product RxS. The precise formulation of the problem to

be solved is given in the following theorem:
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Theorem 2.1, Hypotheses: : .

f is a continuous real valued function of (x,y,u,p,q) in C.
There is a constant M > O such that |f(x,y,u,p,q)| < M in C.

f satisfies a uniform Lipschitz condition in (p,q), i.e., there
is a constant L > O such that

|£(x,5,4,8,2) - £(x,¥,9,p,0) | < L([p~p| + [g-q])
whenever the arguments of f are in C.

o ,a,b,n are continuous functions of x for 0 < x < A, and
T,¢,d4,f are continuous functions of y for 0 <y < B.

la(x) * c(y)] <1 for (x,y) in R,

£(0) = n(0) = 0, and 0 < &(y) < A, 0 < n(x) <B.

There is a continuous function of x, say ¢ , such that Z(0) = O,
Z(A) = B, and such that y = ¢(x) has an inverse for 0 < x < A. -
Moreover the graph of y = n(x) lies below that of y = 4(x) and
the graph of x = E(y) lies above it, i.e., n(x) < £(x) and

£(y) < )

Letting ||a|] = sup{ la(x)|: 0<x< A} , ete., we assume that

U HRHAR ) - oL fe <2

llal] |lel| exp L(A+B) < 1.

Conclusion:

There is at least one real valued function u(x,y) which is continuous

together with its partial derivatives ux’uy’uxy in R, and which satisfies

the partial differential equation

uxy(x,y) = f[X.y.u(x,y), ux(x’Y)’ uy(pr)]

4
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and which satisfies the following boundary conditions (here we use the
notation ul(x,y) = ux(x,y) and uz(x,y) = uy(x,y)) ,
u [x,n(x)] =0 (x) + alx) u,[x,0(x)] + dlx)ulx,n(x)] ,
wlE@),5] = () + ely) wlE),y] + dx)ulE)y] ,

u(0,0) = ug .

The proof of this theorem will occupy the next several sections.
We note that the above boundary value problem is equivalent to the
following system of integral equations, where F(x,y) = f[x,y,u(x,y),

u, (x,5), uy(x,y)] .

X
u(x,y) = g {o(s)+a(s)u,ls,n(s)J+b(s)uls, n(s)] } ds

o

y
+ g { e(@)re(t)uyle(e),e] + d(t)u[z(t).t]}dt
o

(2.1) + { j ydtj::t)ds - ixds ln(s;t} F(s,t) + u
o

ul(x,y) = 6(x)+a(x)u2[x,q(x)] + b(x)u[x, n(x)] +-[y F(x,t)dt ,

n(x)
X

uy(x,5) = (y)+e(y)u, [E(y),¥] + aly)ule(y),y] + L( )F‘(s,y)ds .
y

2. The finite difference schene.

Let n be a positive integer and let 0 = X, < Xy <o < X, = A. Let
¥y = C(xj) for j = 0y...,n , where { is given in condition (g) of theorem
2.1. Then for O S jrok < =1 let

Rj,k =[(x,y): xj <x< xj+l’ yks y < yk+l} ’

and
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Rn—l,k= {(x,y): xn—ls x < X 0 ykS y <yk+1} ’ | :

ete.
We next introduce the following functions. For (x,y) in R

xj_l ifj>o0 Vi1 if k>0
X(X) = ’ p.(Y) =

xj ifj=20 Yy ifk=0 ,

5,k Tet
’

®(x,y) = o(x) + a(x)p(x,y) + b(x) €(x,y) ,
3(x,y) = t(y) + e(y)n(x,y) + dly) o(x,y) ,
X y

9(x,y) =§ 7[x(s),n(x(s))]ds + { BlE(eN], w(t)ldt
[e] [o]
x  alx(s)]

+{Ly‘“£;<t>%’“§,‘“i ¥ Wat) vy,

(0j+l,k- Oj,k) / (xj+l-xj), J 2 0’ kZ 1 ’

7[(xpy)=
(85,0~ 91,0 /0y = X)) s 321 k=0,

where Oj,k = O(xj,yk), etc.,

(Gj,k+l- 'Oj’k)/ (yk+l~yk)’ 3 _>_ 1, k Z o,
plx,y) =

For (x,y) in Ry, o let *(x,y) = v,(0,0), p(x,y) = u,(0,0) whers
u,(0,0) =0(0) + a(0) u,(0,0) ,
u2(0,0) = t(0) + ¢(0) ul(0,0) .

Let
d(x,y) = £[n(x), r(y), 9N (x), (¥)), x(x,¥), p(x,¥)] .
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One can now verify that if @, n, p have been computed in cellsRi j
)

for 0 < i, j < k=1, then it is possible to compute 9, %, p in cells Rk j and
’

Ri X for 0< i, § <k in terms of quantities already computed in the previous
s

cells.

If >0, k> 1 then for (x,y) in Rj K
- - ’

(3.1 alay) = wy = O =9y )/ ()

x_j+l
—i { J 7 (s), n(n(s))]ds

X, ~X
J#17j xj

X541 X541 HIX(SH
dtS ds-—X ds dt)é(s,t)

*3

4"
= %[xj_l,q(xj_l)] + ¢(xj,t)dt ,

n(xj_l)

where xj-l is to be replaced by xj vhen j = O, But

y
;—x Qx,y) =’ (x),q(n(x))] + j O(x,t)dt
n(N(x)]
y
= %[xj_l,q(xj_l)] +-J O(x,t)dt .
q(xj_l)

Since $(x,y) = O(xj,y), we have
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_g% O(x,yk) = n(x,yk) if x, <x<x

3 j+1°?

g—; O(XJ’yk) = ‘K(Xj’yk) .

In the case of 2 1, k = 0 ve get

2+ -
-a—,x 0(xj_1,yk) = K(xj’yk) D

Similarly if § > 1, k > O then

(3.2) P(X,Y) = p(xj’yk) = (Oj,k‘*'l- gj,k) / (yk+l-yk)

T+l

-— l “

= ;;:I:ii { I p[{(p(t)),#(t)]dt
Yk

kel %5

+ dt d(s,t)ds
v  Elw(®)]

X

' J
= S[E(yk_l),yk_ll + [ ¢(S,yk)d3 ’
2y, _y)

where y, . is to be replaced by y, when k = O, Then as above
k=1 k

?
- O x. =
33 (xJ,y) p(xj,y) if Yy <y« yk+l ’

o+ _
o O(xj,yk) = p(xj.yk) .
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If J =0, k > 1 then
+
? Q(on}'k_l) ( j’yk) .

We now introduce the functions p,q defined as follows:

= o(x,y), x= xj

p(x,y) =
% ox,y), X, <x < xpy
%"; ox,y)y ¥ =¥,

q(x’Y) =

?
55 S0¥)s ¥ <Y <Fyy,

In what follows we will be interested in a sequence of subdivisions

of R such that as n tends to infinity
(3.3) a = sup{ Ixj+1-xj| + |yk+1-ykl: 0<j<n 0<k<n }

tends to zero.

To each n will correspond a particular ®,=,p,p,q etc., and when we

(n)

wish to indicate this explicitly we will write O(n),t( n) (n) (n) »qQ ete.

4. The sequences of approximating functions.

We now want to show that the sequences { -O(n)l ’ {p(n)} ’ {q(n)z

contain subsequences { (k(n))} , {p(k(n))} , {q(k(n))} such that

olk(n)) (k(n)) (k(n))

-Su, p -y, and q - Uny where u is a solution to the

boundary value problem. Let us introduce the following definition.
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Definition 1. A family of functions { g(n)(x,y) } is equioscillating to

gero on R if for any € > O there isa 6§ > O and an n, > 0 such that

[g(n)(§,§) - g(n)(x,y)l < € whenever n > n _, [%~x| < 8, |¥y| < 8,(x,¥) in R

and (x,y) in R.

We want to show that {'O(n)} ,{ p(n)} ,{ q(n)} are uniformly bounded

in absolute value and are equioscillating to zero on R.

Theorem 4.1. { O(n)} , {p(n)} ’ {q(n)} are uniformly bounded in abasolute

value on R.
Proof: We will first prove the theorem for {-O(n)} , { “(n)¥ , {p(n)} .

From the definitions of €, = ,p (dropping the superscript n) we see that

there is a constant Ml > 0 such that

[xll < ¥y + [lall Hell + [lol] l8l] ,
[ell <My + [lell [ixfl + [[all Lol ,
[lell <My +a [lxl| + B lp]] -

Hence

[l <+ Hall{ el lell Hall« Hall [loll} + 116l 1ol
and since ||a|| [|c]| <1,

el < {aaellalD) + Clabl Hall + (DIl { 2= 1Hall flel1] =2
Similarly

Hell < {maellell) + lIol] el + [1alD1ol] § { 2=Ilal} HelI}72 .
Therefore,

A(1+] |a]|)+B(1+]]c
llol] < wfn + Adellallpenaellel]) J,

e {aCtlall Halt+1 ol DseCl 1ol [ (el l+11al ) | r=—h

a c

10
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and so by condition (h) of theorem (2.1) the ||9||'s are uniformly bounded,
and hence so are the ||x||'s amd the [lel]'s.
But it is obvious that the uniform boundedness of the ||x| l's implies

the uniform boundedness of the le | 's, and similarly for the llpl I 's and

Ilall's.

In order to show that the sequences are equioscillating to zero ve

need the following result.
x
Theorem 4.2. If 0 < g(x) < M and 0 < g(x) <y + L| i g(s)ds| for 0<a <,
0 < x < A, then g(x) < v exp(LA). a
Proof: If a < x then
x s x s

gx) <y +1L S { Y + Lfg(sl)dslzds < y(1+1A) + 12 g ds [ g(sl)dsl R

a a a a

N n N+1
(LA) (LA)

Theorem 4.3. Each of the sequences {O(n)l ’ {p(n)l ’{q(n)} is equi~
oscillating to zero on R.
M The theorem is obviously true for { G(n)} . We next coneider{n(n) z
and { p(n)} . Let us assume (x,y) in Rj,k and (Xx,y) in RJ,K and j,J,k,K all
2 1. Again suppressing the superscript n, we have

Ix(x,7)- n(x,3)| < [n(x,3)- 2(x,3) | + [n(x,5) = x(x,¥)] .
It is obvious that given ¢ > O, there is a & > O such that (for n large enough)

|x(x,¥) = =(x,y)| < €/2 whenever (y~y) < 6 . Hence we need only consider

the term lu(;,y) - n(x,y)| . Similarly it is only necessary to consider

lp(x,¥) = p(x,y)|. But then by (3.1), (3.2), and applying the Lipschitsz
condition to f,

11
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lx(;’Y) - l(x,y)' <Y+ “a“ IP(_x»ﬂ(xJ))"P(xp'l(xj))»'

y
+ L] |n(x,t) = =(x,t)]dt],
n(x)

lp(x,3) = p(xy)| < v+ [lel|  |x(E(yy),y) = =(E(y ) o)

X
cr 1] 1ot - stelasl
&(y)

vhere Y > O is equioscillating to zero.
Therefore by theorem 4.2,
|%(%,y) ~x(x,¥)] 5{v+llall lp(xyn(xy))=p(x,n(x)) | } exp (LA)
1o =un| {7+ el In(Elr),y) = =(€(5,)9)| }exp (1B)

If we choose constants B, w, V such that
0 <Yexp(LA) =B, O <rexp(LB) =B, ||a|lexp(LA) = w, ||c||exp(LB)=y,

then

|n(x5,5,) - t(xj,yk)l <Bp+ wlP[Xi,n(xJ)] - p[xj,n(xj)]l ,
Repeated application of these last inequalities gives

|x(xpoy,) = =(xpy )| <8+ ol |l (x ) a(x)] = wlEh(x;hnlx,)]]

m
= p(1+u) +ub | x[En(xy D)) = al¥nCx Don(x]] < BI0) T ()T +

r=0
m+l

()™ sup { [x(Z,y)= 2(x,7) |5 Ey)eR, (x,7)eR §.

Thus if wp < 1 then { "(n)} is equioscillating to szero, But

12
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w = |[a]] |]el| exp(L(A+B)], and this is < 1 by hypotheses (i) of
theorem 2.1. We dispose of { p(n) } in a similar way.
It is obvious from the definition of p,q that since { u(“)} , {p(")} are

equioscillating to zero on R, then so are ip(n)} ’ { q(n)} .

5. Convergence to a solution.

Since each of the sequences { O(n>} ’ {p(n)} R { q(n)% is equibounded
and equioscillating to zero, we can apply Arzela's theorem. More specifically

@ (n(s))
we can find a subsequence {n(s)} of { n} such that € converges

[e's)
s=1 n=1

‘ uniformly to a continuous limit function €% on R. Then we can find a

@

subsequence { n(s(t))-} of { n(s)% such that p(n(s(t))) converges uni-
t=1

formly to a continuous limit function p* on R. But then we can find a sub-
® (n(s(t(k))))

sequence [ n(s(t(k)))} of {n(s(t)) } such that q converges

k=1

uniformly to a continuous limit function g* on R. If we now choose the

0 o

original subsequence { n(s)} to coincide with { n(s(t(k)))} then for

s=1 k=1

(x,y) in R

lim O(n(s))(x,y) = 9*(x,y) ,
s+

lim P(n(S))(x)Y) = P*(x’y) ’
s ™ 00

(n(s))(

lim  gq x,y) = q*(x,y) .

s *

We want to show that ©*(x,y) is a solution of the boundary value problem,

and that
D% 0 on
— = D — ¥
-bx p ’ By q *

13
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To this end consider
X

(5.1) o“””uw>-{[c«w>+ua¢umun+bu)mumu»hs

(o]

Yy
10 + c@prE(, 1) + ae) (a6, 0lar

y x ° x  n(s)
+[S at S ds - S ds S dt]f(s,t,9*(s,t),p*(s,t),q*(s,t)] + uy } .
o E(t) ) o

ASuppressing the superscript on O(n(j)) and using the fact that

pIM(x),n(y)] = n(x,y), oM (x),w(y)] = p(x,y) ,

the above expression is just equal to

X
[ { o)) ~a(s) + ali(s))alr(s),n(M(e))] - als)a*(syn(s))

(]
+ b(r(5)) ©[A(s),n(r(8))] = b(s)e*(s,n(s)) } as

y
+ 8 {T(u(t))-T(t) + c(r(1))plE(r(t)),p(t)] = c(t)p*(E(t),t)

o)

+ a((€)BLEM(6)),8(8))] = A(t) S (e(t),4) | at

y x X n(s)
+L§dtj u-jdsj u}{fhunmw,muwmu»,
o £(t) ) o

p()\(s)93"(t))’q0~(5)’|“(t))] - f[s,t,O*(s,t),p*(s,t),q*(s,t)] } + Yl

where lTll S'M{'BOEEEBIE[“(t)] - E(t)] + AozugAln[k(S)]-n(s)l} ,
-— - -s—

and this last term goes to zero as the a (defined by (3.3)) goes to zero.

n

14
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The absolute value of the integrand in the double integrals is not greater
than
lf[)\’l"pgié)\ﬂ*)op()up)’Q()&’P)] - f[kylhg*()w#)op*()\,l"))q*()ni")]I

+ |f[)~,p.,0*(k,p),p*().,p.) ,q*(k,u)]-f[sstﬁ*(s,t) :P’(s’ t),q*(s,t)ll .

By the uniform convergence of #,p,q to €*,p*,q* respectively, and by the

continuity of f,o,t,a,b,c,d it is clear that (5.1) goes to zero asn(j) — oo,

All that remains to do is to show that

To do this proceed with p and q in the same way as we did with 8, i.e.,

consider for example

pRN (4 4y -{o’(x) + a(x)q*(x,n(x)) + b(x)&*(x,n(x))
y
+ J f[x,t’gl(x,t),p*(x,t),q*(X,t)]dt } .
n(x)

As in the case of (5.1) this expression goes to zero as n(j) »co. Hence

(n(§)) _ e
1lim P - p* S R
Jr oo ' X

Similarly we can show that q* =:§-§—: . This completes the proof of theorem

2.1‘

6. Other conditions on f.

It was shown by Glick [3] that in the case of the n-dimensional charao-
teristic bourndary value problem the condition that |f| be bounded can be

replaced by the condition that f satisfy a Lipschitz condition in u as well

15
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as in the partial derivatives of u. The following theorem shows that we can

get a similar result for problem (1.3).

Theorem 6.1, We make the same assumptions in theorem 2.1, except that
conditions (b) and (c) are replaced by the following condition:
f satisfies a uniform Lipschitz condition in (u,p,q) i.e., there is
a constant L > 0 such that |f(x,y,4,P,9)- £(x,¥,u,p,q)| < L([u~u] +
[p-p| + |3=q|) whenever the arguments of f are in C.
Then for A,B sufficiently small, we have the same conclusion as in theorem
2.1.
Proof: Let f(x,y,u,p,q) = £(x,y,0,0,0) and let B, %, p denote 9, =, p
corresponding to the function f. Then since I?I is bounded on R and hence on
C, the sequences { 5(n)} , {;(n)} , {E(n)} are uniformly bounded on R.
Hence there is a constant M > O such that

=l

In

wl+ Tlm ==l < Il=ll+Hall Te=pl I+l 10l] [1o - 3]

+

y .
Ll § {1l + sl « 1l Y ae |

n

<M+ [lal] et + [Iof] [1eI} + tB([[el[ + [Ixl] + lIelD).
Similarly
[olt <M+ [fell [lxll+all [1ol}+ Lacllofl+||x]|+l1el]) ,
and
[1o1] < w+ aCllall Hell+ll6l] [1olD+aCIlel] |Ixl+l1all |lo]])

+ LaB([ 8] + [1al] + Ilel]) .

16
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It is obvious that for A,B sufficiently small we can proceed as in section 4
to prove the uniform boundedness of O(n) ’ n(n) ’ p(n) . The rest of
the proof goes through as before.
Finally we note that the boundedness of |f| or the Lipschitz continuity
of £ with respect to u can be replaced by the condition
lel < k(lul + [p + |a])
for some constant K > O, To see this it is only necessary to point out that

in this case we have

Hall < Holl+[{all Hell+lToll [1of[+xB(|[el] + [Ial] + [lo]]) ,
Hell < Hall«llell Hall+llall [1oll+xacll8l] + [Ixl] + [lol]) ,
[[ell < aCtlall+lfall Hell+[Toll [1ol+BCII=l+lel] |Ixll+{ld}{ol)

Kas([|8]| + [=l] + [lel]) .

AN

+

and again, for A,B sufficiently small it follows that {o(“)} , { x(“)}
{ p(n)-§ are uniformly bounded.
This kind of condition on f has been used by Z. Szmydt [5] who treats a

similar problem by a fixed point technique.

17
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